Sagitário: olhe o céu em direção ao centro da Via Láctea

Quando olhamos à vista desarmada na direção da constelação de Sagitário, pouca coisa se vê. São estrelas e mais estrelas que se multiplicam à medida que binóculos e telescópios mais potentes são empregados. Entretanto, é ao redor desse ponto que nossa Galáxia gira. Quando olhamos para Sagitário estamos observando diretamente o centro da Via Láctea.

Imagem de parte da Via Láctea feita pelos telescópios do projeto 2MASS, que estuda o céu no comprimento de onda do infravermelho. (Crédito: 2MASS - The Two Micron All Sky Survey)

Estima-se que aproximadamente 200 bilhões de estrelas façam parte desse sistema. Com massa estimada em quase dois trilhões de massas solares, nossa Galáxia tem entre 13.5 e 13.8 bilhões de anos e seu centro está localizado a aproximadamente 30 mil anos-luz de distância da Terra.

O centro galáctico é um lugar bastante tumultuado. Observá-lo através da luz visível não é uma tarefa fácil já que a poeira cósmica obscurece praticamente toda a luz emitida, mas quando sondado no comprimento de onda do infravermelho milhões de estrelas podem ser vistas.

A imagem acima foi captada nesse seguimento do espectro por dois telescópios do projeto 2MASS, instalados em Monte Hopkins, no Arizona e próximo a La Serena, no Chile. Na cena, o centro da Galáxia aparece em tons brilhante no canto inferior esquerdo da foto, enquanto o plano da galáxia, no qual nosso Sol orbita, é visto na forma de uma faixa diagonal escurecida, composta de poeira cósmica criada nas atmosferas de estrelas gigantes vermelhas.

Continuar lendo

[ESPECIAL] As 10 mais belas fotos do Hubble

Boa tarde.

Eu queria ter aproveitado o dia em que o Hubble completou 20 anos desde seu lançamento, mas infelizmente não tive tempo de selecionar imagens para este tópico. Foi então que hoje encontrei no site do Apolo 11, uma seleção das 10 mais belas fotos tiradas pelo Hubble, e estou aqui compartilhando com vocês.  Junto das imagens, estou também postando um pouquinho sobre o Hubble.

Outra coisa, se você ainda não votou, peço para que vote na enquete sobre o tema do blog, para que eu possa mudar (ou não, se for escolhido)  o tema e fique agradável a todos. Bem, agora vamos ao que interessa!

As 10 mais belas fotos do Hubble

Desde que foi lançado ao espaço, em abril de 1990, o Telescópio Espacial Hubble, ou HST, tem proporcionado aos cientistas e ao público em geral as mais belas imagens até hoje feitas do nosso Universo.

Apesar de não ser o primeiro ou o único telescópio em órbita da Terra, O Hubble é um dos maiores e provavelmente o mais versátil e sua contribuição aos estudos astronômicos tem sido vital desde que foi posto no espaço, permitindo um número incalculável de novas descobertas. De 200 papers (trabalhos científicos) publicados a cada ano e que recebem mais citações, pelo menos 10% são baseados nos dados do telescópio.

Dizer qual das imagens do Hubble é a mais interessante ou importante não é uma tarefa fácil. As imagens abaixo são uma coletânea de 10 cenas que a nosso ver conseguem ao mesmo tempo serem belas e cientificamente importantes. Veja se não temos razão!

Galáxia Espiral NGC 628
Uma das mais belas imagens captadas pelo telescópio Hubble é sem dúvida a da galáxia em espiral NGC 628, também conhecida como M74.

Descoberta em 1780 pelo astrônomo Pierre Méchain, M74 está localizada a 32 milhões de anos-luz na direção da constelação de Peixes e é formada por aproximadamente 100 bilhões de estrelas, sendo ligeiramente menor que a Via-Láctea.

Em março de 2005, cientistas anunciaram a existência de um possível buraco negro de massa 10 mil vezes maior que nosso Sol em seu interior. Apesar de existirem diversas imagens dessa galáxia, a cena captada pelo Hubble é uma das mais belas e detalhadas.

O Balé Celestial ARP 87
Registrada pelo telescópio Hubble em fevereiro de 2007, a cena ao lado mostra uma intrincada e maravilhosa coreografia espacial executada pelo par de galáxias ARP 87, distantes a mais de 300 milhões de anos-luz, na constelação de Leão.

Estrelas, gás e poeira proveniente da grande galáxia espiral NGC 3808, à direita, parecem formar um gigantesco braço celestial que envolve por completo sua companheira menor, NGC 3808A, à esquerda. A colossal força gravitacional envolvida é nítida e distorce até mesmo o típico formato das galáxias.

A partir das imagens feitas pelo Hubble, os cientistas descobriram que ARP 87 contém um número maior de clusters de super estrelas – regiões mais compactas e ricas em estrela jovens – do que os encontrados em nossas galáxias vizinhas.

Cicatrizes do cometa Shoemaker-Levy em Júpiter
Entre os dias 16 e 22 de julho de 1994, mais de 20 fragmentos do cometa Shoemaker-Levy 9 colidiram com o planeta Júpiter. O violento impacto foi acompanhado por centenas de observadores ao redor do mundo e diversas imagens foram registradas, tanto por astrônomos amadores como profissionais, mas nenhuma se compara a esta, feita pelo telescópio Hubble.

A imagem apresenta nitidez impressionante e revela as enormes cicatrizes deixadas pelos impactos do cometa sobre o hemisfério sul do gigante gasoso. Os impactos resultaram em diversas cicatrizes negras na atmosfera joviana, além de elevarem colunas de gás a milhares de quilômetros de altitude e formarem bolhas de gás de centenas de graus Celsius.

Estima-se que os fragmentos tinham aproximadamente 2 quilômetros de diâmetro e atingiram o planeta a 60 km/seg.

Berçário de Estrelas NGC 604
Provavelmente uma das mais belas imagens espaciais, NGC 604 é uma nebulosa de grandes dimensões, repleta de estrelas em formação. Medindo aproximadamente 1500 anos-luz de comprimento, NGC 604 é uma verdadeira maternidade de estrelas, cem vezes maior que a nebulosa de Órion M42.

Descoberta em 1784 por William Herschel, a nebulosa abriga em seu interior mais de 300 estrelas quentes com massa 15 a 60 vezes maiores que nosso Sol e se localiza a 2.7 milhões de anos-luz da Terra, na borda da galáxia espiral M33, direção da constelação do Triângulo.

A cena apresentada foi registrada em janeiro de 1995 através da Câmera Planetária de Campo Largo. Foram realizadas diversas exposições em diversos comprimentos de onda, com o propósito de estudar as propriedades dos gases ionizados que atingem mais de 10 mil graus Celsius. O estudo dessas imagens permitiu aos cientistas esclarecerem os diversos pontos referentes à formação e evolução do meio interestelar.

Saturno e seus anéis maravilhosos
Quem olha o planeta Saturno pela primeira vez ao telescópio, facilmente se encanta. Saturno se parece com uma delicada miniatura planetária, com pequenos anéis que mais parecem uma pequena jóia feita por um artista. Mas ao olharmos a foto feita pelo telescópio espacial Hubble o belo planeta gasoso deixa de ser uma miniatura admirável para se tornar um gigante imponente.

Saturno é o sexto planeta do Sistema Solar e o segundo maior em tamanho. Seu gigantesco sistema de anéis tem aproximadamente 274 mil quilômetros de diâmetro, mas sua espessura não passa de 1.5 quilômetro.

A cena captada pelo telescópio Hubble é uma das mais belas já feitas dos planetas do Sistema Solar e a riqueza de detalhes dá a impressão de que a cena não é apenas uma foto, mas uma pintura feita para admirar.

Ecos de Luz de V838 Monocerotis
V838 Monocerotis é uma gigantesca estrela variável localizada a mais de 20 mil anos-luz da Terra na constelação do Unicórnio, ou Monoceros. Em outubro de 2002 os cientistas testemunharam um forte e repentino aumento em seu brilho, que transformou a estrela no objeto mais luminoso da Galáxia. Os eventos registrados foram únicos, com surgimentos de intensos picos luminosos com velocidade de expansão incomum, seguido de súbitos apagões.

No início os pesquisadores pensaram que o aumento de brilho era o resultado de uma explosão comum de uma estrela em estado de supernova, mas hoje praticamente todos concordam que o evento foi totalmente diferente, com algumas teorias apontando para a fusão de duas estrelas ou até mesmo que V838 Monocerotis tenha engolido os planetas gigantes que a orbitavam.

A imagem captada pelo telescópio espacial Hubble mostra com clareza os ecos da explosão. Na cena a luz é refletida pela poeira estelar, emoldurada por espirais e redemoinhos provocados por poderosos campos magnéticos.

Pilares da Criação
Provavelmente essa seja a mais impressionante imagem captada pelo telescópio espacial Hubble. A cena retrata parte da Nebulosa da Águia, M16, e basta olhar para ela para entender porque recebeu o nome de Pilares da Criação. Um simples olhar é o suficiente para impressionar até mesmo os mais leigos.

A foto retrata gigantescas estruturas em forma de colunas formadas por hidrogênio interestelar e poeira, responsáveis pelo nascimento das novas estrelas do Universo.

Registrados em 1995, os três pilares de poeira cósmica constituem a imagem mais emblemática captada pelo Telescópio Hubble, mas os pesquisadores acreditam que o ícone não exista mais. Uma violenta explosão de uma supernova, ocorrido há 8 mil anos, emitiu uma poderosa onda de choque que provavelmente desmoronou os pilares. A violenta explosão chegou à Terra há 2 mil anos e possivelmente foi vista pelos habitantes daquela época como um forte clarão naquela região do céu.

Nebulosa do Caranguejo – Restos de uma explosão
Um dos objetos mais observados pelos astrônomos, amadores ou profissionais, é sem dúvida a Nebulosa do Caranguejo, formada dos restos de uma supernova e localizada a 6500 anos-luz na constelação de Touro. A nebulosa foi observada pela primeira vez em 1731 pelo astrônomo John Bev e tem um diâmetro de 11 anos-luz, que se expande a 1500 quilômetros por segundo.

No centro da nebulosa se encontra o Pulsar do Caranguejo, uma pequena estrela rotatória de nêutrons que emite feixes eletromagnéticos a razão de 30.2 pulsos por segundo, que se propagam desde os raios gamma até o espectro de radiofrequência. Estima-se que seu diâmetro atual seja de apenas 30 quilômetros.

Foi a Pulsar do Caranguejo que explodiu e se transformou em uma supernova. O evento foi observado por astrônomos árabes e chineses no ano de 1054, que relataram que o brilho era tão intenso que podia ser visto até mesmo durante o dia.

A maravilhosa Galáxia do Sombrero
Outro objeto muito “caçado” pelos observadores noturnos é a famosa galáxia do Sombrero, aqui retratada em grande estilo pelo telescópio espacial Hubble. Olhando a imagem nem é necessário dizer por a galáxia recebeu esse nome.

Distante cerca de 30 milhões de anos-luz da Terra na direção da constelação de Virgem, a galáxia do Sombrero, ou M104, é formada por um proeminente disco de partículas e gás e uma gigantesca e brilhante protuberância central.

Em 1990, utilizando imagens do Telescópio Hubble, um grupo de pesquisadores demonstrou que era impossível manter a velocidade de rotação das estrelas em sua área central, a menos que uma gigantesca massa 1 bilhão maior que o Sol estivesse presente em seu centro, concluindo então pela existência de um dos maiores buracos negros já descobertos.

Campo Ultra Profundo
A primeira vista a imagem ao lado se parece com uma montagem, onde se vê diversas galáxias, estrelas e objetos distantes. Mas a cena é bem mais que isso. Ela retrata uma pequena região na constelação Fornax e é a mais profunda imagem do Universo jamais visto no espectro visível. A cena contém aproximadamente 10 mil galáxias vistas em um espaço de apenas um décimo daquele ocupado pela Lua Cheia.

A cena levou quatro meses para ser feita, entre setembro de 2003 e janeiro de 2004, e mostra objetos localizados há mais de 13 bilhões de anos-luz. O objeto mais tênue registrado na imagem tem menos de 4 bilionésimos do brilho que podemos ver com nossos olhos e representam as primeiras estrelas criadas no Universo.

Fonte: Apolo11
Crédito das imagens: Nasa/Hubble Space Telescope Science Institute

Imagem mostra trilhas de satélites na nebulosa de Órion

Quando um satélite é colocado a 36 mil quilômetros acima da superfície da Terra, seu período orbital coincide com o tempo de rotação da Terra, que é de 24 horas. Devido a esse sincronismo de movimentos, essa órbita é chamada de geossíncrona. Se um satélite em órbita geossíncrona estiver acima da linha do equador, um interessante fenômeno acontece e para um observador na Terra o satélite parecerá imóvel, sempre sobre o mesmo ponto do céu.

Trilhas luminosas de satélites geoestacionários, criadas pelo mecanismo de compensação de rotação Terra utilizado em telescópios. Crédito: Babak Tafresh/Nasa/APOD.

A capacidade de um satélite permanecer fixo sobre o mesmo ponto é largamente empregada na observação meteorológica, uma vez que a mesma área da superfície é sempre observada da mesma posição, permitindo aos pesquisadores acompanharem o deslocamento das massas de ar, furacões e outros fenômenos. Nas telecomunicações o benefício é imediato: um satélite colocado acima do Atlântico, por exemplo, permite conectar as Américas com a Europa ou África com apenas duas antenas apontadas para o mesmo satélite.

De fato, se pudéssemos observar um satélite do tipo geoestacionário o veríamos sempre na mesma posição, parado contra o fundo de estrelas e planetas aparentemente móveis, deslocando-se no céu devido ao movimento de rotação da Terra.

Mas, e se fosse ao contrário? O que veríamos se apontássemos um telescópio profissional para uma estrela ou planeta que estivessem sendo acompanhados suavemente pelo mecanismo de rastreamento do instrumento?

A resposta para essa pergunta é a imagem mostrada. Em telescópios com acompanhamento automático, o movimento de rotação da Terra é compensado por um pequeno motor que gira o equipamento no sentido oposto ao da rotação da Terra. Isso faz com que as estrelas e planetas pareçam estáticos no campo de visão do instrumento, permitindo que os astrônomos possam estudar qualquer objeto como se estivesse imóvel.

Como os satélites geoestacionários acompanham o movimento da Terra e os telescópios fazem a compensação em sentido inverso, o resultado de uma observação a longo prazo são os traços mostrados na cena. Nela, os satélites em grande altitude ainda reluzem a luz rasante do Sol que atinge suas estruturas e painéis solares, criando traços que nada mais são do que o resultado do movimento do telescópio, que nesta foto segue com extrema precisão a região da nebulosa de Órion.

Fonte: Apolo11

Galáxias e cometas marcam estreia do telescópio Wise

Cometa Siding Spring, visto em infravermelho pelo telescópio Wise.(Imagem: NASA/JPL-Caltech/UCLA)

Sábio

Um elenco diversificado de personagens cósmicos marcou a estreia do novo telescópio Wise (Wide Field Infrared Survey Explorer), lançado pela NASA nos últimos dias de 2009.

O WISE é um telescópio na faixa do infravermelho que ficará circulando em volta da Terra ao longo dos pólos para fazer um mapa completo do universo, detectando galáxias longínquas, estrelas frias demais para que sua luz seja captado com precisão por outros telescópios e até asteroides escuros, escondidos nas profundezas do Sistema Solar, de onde podem surgir “repentinamente” para se chocar com a Terra – veja mais detalhes em Telescópio Wise vai procurar Estrela X, asteroides ameaçadores e muito mais.

Monitoramento de asteroides e cometas

A fase científica da missão começou em Janeiro. Desde então, o Wise já enviou mais de 250.000 imagens em infravermelho do Universo. Agora a NASA divulgou as primeiras dessas imagens, já processadas e corrigidas.

As imagens selecionadas para divulgação incluem um cometa, uma nuvem onde se originam novas estrelas – um berço de estrelas, como dizem os astrônomos – a bela galáxia de Andrômeda e um distante aglomerado de galáxias.

“Estas primeiras imagens estão comprovando que a missão secundária da sonda, de ajudar a monitorar asteroides, cometas e outros objetos estelares, será tão criticamente importante quanto sua principal missão de levantamento de todo o céu no infravermelho,” diz Ed Weiler, um dos cientistas da missão.

Aqui, o berço de estrelas na nuvem NGC 3603, observado em infravermelho pelo Wise, aparece sobreposto ao mesmo ponto do céu observado em luz visível pelo telescópio Hubble. (Imagem: NASA/JPL-Caltech/UCLA/STScI/MPIA/Univ. of Heidelberg/Univ. of Illinois)

Poeiras de estrelas

Durante as observações, espera-se que o novo telescópio encontre dezenas de cometas desconhecidos, incluindo alguns que se aproximam bastante da Terra. O Wise ajudará a desvendar pistas, guardadas dentro desses cometas, sobre como nosso sistema solar pode ter-se formado.

“Todas essas fotos contam uma história sobre nossas origens e nosso destino, ambos ligados à poeira estelar,” disse Peter Eisenhardt, cientista da NASA. “O ‘Sábio’ (wise em inglês) vê cometas empoeirados e asteroides rochosos traçando a formação e a evolução do nosso sistema solar. Nós podemos mapear milhares de sistemas solares nascendo e morrendo em toda a nossa galáxia. Podemos ver os padrões de formação de estrelas em outras galáxias, e ondas de estrelas explodindo em aglomerados de galáxias a milhões de anos-luz de distância.”

Fonte: Inovação Tecnológica

As Plêiades

Na mitologia grega, as plêiades eram filhas de Atlas e Pleione. Cansadas de serem perseguidas pelo caçador Órion, pediram a Zeus que as transformasse em uma constelação.
As plêiades são: Electra, Celeno, Taigete, Maia, Mérope, Asterope e Dríope.

As Plêiades pelo pintor Elihu Vedder

Mas as Plêiades (Objeto Messier 45) também são um grupo de estrelas na constelação do Touro. As Plêiades, também chamadas de aglomerado estelar (ou aglomerado aberto) M45 são facilmente visíveis a olho nu nos dois hemisférios e consistem de várias estrelas brilhantes e quentes, de espectro predominantemente azul. As Plêiades tem vários significados em diferentes culturas e tradições.
O cluster é dominado por estrelas azuis quentes, que se formaram nos últimos 100 milhões de anos. Há uma nebulosa de reflexão formada por poeira em torno das estrelas mais brilhantes que acreditava-se a princípio ter sido formado pelos restos da formação do cluster (por isto receberam o nome alternativo de Nebulosa Maia, da estrela Maia), mas hoje sabe-se que se trata de uma nuvem de poeira não relacionada ao aglomerado, no meio interestelar que as estrelas estão atravessando atualmente. Os astrônomos estimam que o cluster irá sobreviver por mais 250 milhões de anos, depois dos quais será dispersado devido à interações gravitacionais com a vizinhança galáctica.
As Plêiades podem ser vistas no Inverno do Hemisfério Norte e no verão do Hemisfério Sul e são conhecidas desde a antiguidade por culturas de todo mundo, incluindo os Maoris (que as chamavam de Matakiri), os Aborígenes australianos, os Persas (que as chamavam Parveen/parvin e Sorayya), os Chineses, os Maias (que chamavam-nas de Tzab-ek), os Astecas (Tianquiztli) e os Sioux da América do Norte.

Charles Messier mediu a posição do aglomerado e incluiu-a como M45 no seu catálogo de objetos semelhantes a cometas, publicado em 1771. Juntamente com a Nebulosa de Órion e o Aglomerado Presepae, foi curioso notar inclusão das Plêiades por, tal como a maioria dos objectos Messier eram muito fracos e mais facilmente confundidos com objetos semelhantes a cometas, que parece praticamente impossível para as Plêiades. Uma possibilidade é que Messier simplesmente queria ter um catálogo maior do que o seu rival científico Lacaille, cujo catálogo de 1755 continha 42 objetos e, por isso, ele acrescentou alguns brilhantes, para aumentar a sua lista objetos.

Imagem do Spitzer em infravermelho, mostrando a poeira associada. Crédito: NASA/JPL-Caltech

A distância das Plêiades é um primeiro passo importante na assim chamada escada das distâncias cósmicas, uma sequência de escalas de distância para todo o Universo. O tamanho do primeiro passo calibra a escada toda, e a escala para este primeiro passo foi estimado por vários métodos. Como o cluster está bem perto da Terra, sua distância é relativamente fácil de medir. Um conhecimento preciso da distância permite que os astrônomos façam um diagrama de Hertzsprung-Russell para o aglomerado que, quando comparado para os desenhados para clusters cuja distância não é conhecida, permite que suas distâncias sejam estimadas. Outros métodos podem então estender a escala de distâncias de aglomerados abertos para galáxias e aglomerados de galáxias, e uma escada de distâncias cósmicas pode ser construída. Fundamentalmente o entendimento da idade e evolução futura do Universo é influenciada pelo seu conhecimento da distância das Plêiades.
Os resultados anteriores ao lançamento do satélite Hipparcos apontavam que a distância das Plêiades era de cerca de 135 parsecs da Terra.

O satélite Hipparcos causou uma consternação entre os astrônomos ao descobrir que a distância era apenas de 118 parsecs* ao medir a paralaxe das estrelas no aglomerado—uma técnica que deve dar os resultados mais diretos e precisos. Trabalhos posteriores tem consistentemente encontrado erros na medição da distância das Plêiades pelo Hipparcos, mas ainda não se sabe por que o erro aconteceu. A distância das Plêiades atualmente é aceita como sendo de cerca de 135 parsecs (praticamente 440 anos-luz).

O núcleo do aglomerado tem um raio de cerca de oito ano-luz e uma raio da maré de cerca de 43 anos luz. O aglomerado inclui mais de 1.000 membros confirmados estatisticamente, embora este valor exclui estrelas binárias não resolvidas. É dominada por jovens e quentes estrelas azuis, 14 podem ser vistas a olho nu dependendo da observação e das condições locais. O arranjo das estrelas mais brilhantes é algo semelhante a Ursa Maior e Ursa Menor. A massa total contida no aglomerado é estimada em cerca de 800 massas solares.

O aglomerado contém muitas anãs marrons, que são objetos com menos de cerca de 8% do da massa do Sol, não possuem massa o suficiente para a fusão nuclear (para iniciar reações em seus núcleos e tornar-se estrelas). Podem constituir até 25% da população total do aglomerado, embora elas contribuem com menos de 2% da massa total. Os astrônomos têm feito grandes esforços para encontrar e analisar anãs marrons nas Plêiades e de outros jovens “aglomerados”, porque são ainda relativamente brilhantes e observáveis, enquanto que anãs marrons nos aglomerados são mais “apagadas” e muito mais difíceis de estudar.

A idade para os aglomerados estelares podem ser estimados comparando com o diagrama de Hertzsprung-Russell do cluster com modelos teóricos de evolução estelar. Utilizando esta técnica, foram estimadas idades entre 75 e 150 milhões de anos para as Plêiades. A dispersão nas idades estimadas é um resultado da incerteza nos modelos de evolução estelar. Em particular, modelos que incluem um fenômeno conhecido como superação convectiva, em que uma zona convectiva dentro de uma estrela penetra uma zona não convectiva, resultando em idades aparentes mais altas.

Outra maneira de estima a idade do cluster é olhando os objetos de menor massa. Em estrelas normais na sequência principal, o lítio é rapidamente destruído em reações de fusão nuclear, mas anãs marrons podem reter seu lítio. Devido à temperatura de ignição baixa do lítio, de 2,5 milhões de kelvin, as anãs marrons de maior massa irão queimá-lo eventualmente, assim a determinação das anãs marrons de maior massa que ainda contém lítio no aglomerado pode dar uma idéia de sua idade. A aplicação desta técnica às Plêiades dá uma idade de cerca de 115 milhões de anos.

O movimento relativo do aglomerado eventualmente irá levá-lo, conforme é visto da Terra, muitos milênios no futuro, passando pelo pé do que é atualmente a constelação de Órion. Além disso, como muitos aglomerados abertos, as Plêiades não vão ficar conectadas gravitacionalmente para sempre, já que algumas estrelas componentes serão ejetadas depois de encontros próximos e outras serão destruídas por marés de campos gravitacionais. Os cálculos sugerem que o aglomerado levará 250 milhões de anos para se dispersar, com interações gravitacionais com nuvens moleculares gigantes e os braços espirais de nossa galáxia também precipitando sua destruição.

*Um parsec (pc) é equivalente a:
30.857 petametro
3.26156 anos-luz
1.9174×10¹³ milhas