Teoria de Einstein derruba dois competidores

A região estudada pelos cientistas cobre uma área do céu de 29 arcominutos (cerca de 5 milhões de anos-luz). Imagem: X-ray (NASA/CXC/SAO/A. Vikhlinin; ROSAT), Optical (DSS), Radio (NSF/NRAO/VLA/IUCAA/J.Bagchi)

Dois novos estudos independentes puseram a Teoria da Relatividade Geral de Einstein à prova como nunca fora feito antes.

Os experimentos, feitos com a ajuda do Telescópio Espacial Chandra, da NASA, que observa o Universo na frequência dos raios X, mostraram, talvez sem muita surpresa, que a teoria de Einstein ainda é a melhor ferramenta disponível para entender o Universo.

Teorias alternativas da gravidade

As duas equipes de cientistas usaram extensas observações de aglomerados de galáxias, os maiores objetos do Universo unidos pela gravidade.

Um dos resultados questiona um modelo da gravidade concorrente com a Relatividade Geral, enfraquecendo os argumentos da hipótese conhecida como “gravidade f(R)”.

O outro estudo mostra que a teoria de Einstein funciona para uma vasta gama de tempos e distâncias em todo o cosmos.

“Se a Relatividade Geral é o campeão dos pesos-pesados, esta outra teoria estava tentando ser o desafiante,” disse Fabian Schmidt, do Instituto de Tecnologia da Califórnia, que liderou o estudo. “Nosso trabalho mostra que suas chances de vir a superar o atual campeão são muito pequenas.”

Aceleração da expansão do universo

Nos últimos anos, os físicos têm voltado sua atenção para as teorias concorrentes à Relatividade Geral em busca de uma possível explicação para a aceleração da expansão do universo.

Atualmente, a explicação mais popular para a expansão acelerada do Universo é a chamada constante cosmológica, que pode ser entendida como a energia que existe no espaço vazio.

Esta energia é denominada energia escura para enfatizar que ela não pode ser detectada diretamente.

Gravidade f(R)

No teoria f(R), a aceleração cósmica não vem de uma forma exótica de energia, mas de uma modificação da força gravitacional. A força modificada também afeta a taxa na qual pequenos aglomerados de matéria podem crescer ao longo das eras para se tornarem grandes aglomerados de galáxias, abrindo a possibilidade de um teste da teoria.

Schmidt e seus colegas usaram as estimativas de massa de 49 aglomerados de galáxias no Universo local, a partir de observações do Chandra, e compararam-nas com as previsões do modelo teórico, com estudos de supernovas, da radiação cósmica de fundo e da distribuição em grande escala das galáxias.

Eles não encontraram nenhuma evidência de que a gravidade seja diferente do previsto pela Relatividade Geral em escalas maiores do que 130 milhões de anos-luz. Este limite corresponde a uma melhoria de cem vezes sobre os limites do alcance da força gravitacional modificada que podem ser estabelecidos sem o uso dos dados dos aglomerados galácticos.

“Esta é a mais forte restrição já feita sobre uma teoria alternativa para a Relatividade Geral nessas grandes escalas de distância”, disse Schmidt. “Nossos resultados mostram que podemos sondar rigorosamente a gravidade em escalas cosmológicas por meio das observações de aglomerados de galáxias.”

A razão para esse ganho dramático em precisão é a forte atuação da gravidade sobre os aglomerados galácticos, em contraste com a expansão universal de fundo. A técnica também promete ser um bom teste de outros cenários modificados da gravidade, como os modelos fundamentados em teorias de várias dimensões e na teoria das cordas.

Relatividade Geral em escala cósmica

O segundo estudo, sem ligação com o primeiro, também reforça o poder explicativo da Relatividade Geral ao testá-la diretamente através de distâncias e tempos cosmológicos.

Até agora, a Relatividade Geral tinha sido testada somente através de experimentos de laboratório para as escalas do Sistema Solar, deixando a porta aberta para a possibilidade de que a Relatividade Geral não funcionasse em escalas muito maiores.

O grupo da Universidade de Stanford comparou as observações do Chandra de quão rapidamente os aglomerados de galáxias têm crescido ao longo do tempo, com as previsões da Relatividade Geral.

O resultado é uma concordância quase perfeita entre a observação e a teoria.

“A teoria de Einstein teve sucesso de novo, desta vez no cálculo de quantos aglomerados maciços se formaram pela atração gravitacional ao longo dos últimos cinco bilhões de anos,” disse David Rapetti, que liderou o estudo. “Os nossos resultados representam o teste de consistência da Relatividade Geral mais robusto já realizado em escalas cosmológicas.”

Aglomerados de galáxias

Os aglomerados de galáxias são objetos importantes na busca por uma maior compreensão do Universo. Como as observações da massa dos aglomerados de galáxias são diretamente sensíveis às propriedades da gravidade, elas fornecem informações cruciais.

Outras técnicas, como as observações de supernovas ou a distribuição das galáxias ao longo de distâncias cósmicas, dependem apenas da taxa de expansão do universo.

Já a técnica utilizada por Rapetti e seus colegas mede também a taxa de crescimento da estrutura cósmica, que é dirigida pela gravidade.

“A aceleração cósmica representa um grande desafio para a nossa compreensão da física,” disse Adam Mantz, do Centro Espacial Goddard, da NASA, coautor do estudo. “As medições da aceleração têm destacado o quão pouco sabemos sobre a gravidade em escalas cósmicas, mas agora estamos começando a empurrar a nossa ignorância para mais longe.”

Do Inovação Tecnológica

Bibliografia:

Constraints on Cosmology and Gravity from the Growth of X-ray Luminous Galaxy Clusters
Adam Mantz, Steve W. Allen, David Rapetti, Harald Ebeling, A. Drlica-Wagner
Monthly Notices of the Royal Astronomical Society
October 6, 2009
Vol.: In Press

Cluster constraints on f(R) gravity
Fabian Schmidt, Alexey Vikhlinin, Wayne Hu
Monthly Notices of the Royal Astronomical Society
Vol.: 80, 083505

Exoplanetas que orbitam na contramão atropelam teorias

Planetas que giram ao contrário

O anúncio feito hoje, da descoberta de nove novos exoplanetas, não deveria chamar muito a atenção – afinal, os planetas fora do Sistema Solar conhecidos até agora passaram a somar nada menos do que 452.

Contudo, ao cruzar os dados com observações anteriores de exoplanetas em trânsito, os astrônomos surpreenderam-se com o fato de que seis deles orbitam na direção oposta à da rotação da sua estrela hospedeira – precisamente o contrário do que se passa no nosso Sistema Solar.

Estas novas descobertas virtualmente jogam por terra as atuais teorias da formação dos planetas.

“Esta é uma verdadeira bomba que estamos lançando sobre o campo dos exoplanetas,” diz Amaury Triaud, do Observatório de Genebra que, juntamente com Andrew Cameron e Didier Queloz, lidera a maior parte da campanha de observações que permitiu estas descobertas.

Teoria da formação dos planetas

A teoria atual de formação dos planetas propõe que os planetas nascem de um disco de gás e poeira que circunda uma estrela jovem.

Como esse disco protoplanetário gira na mesma direção da estrela, a teoria resultava em que os planetas formados a partir desse disco orbitariam, mais ou menos, no mesmo plano e se moveriam ao longo das suas órbitas na mesma direção que a rotação da estrela.

Esta é cara do nosso Sistema Solar. Como somente há poucos anos os cientistas começaram a descobrir planetas orbitando outras estrelas, não é de estranhar que a teoria que tentava explicar a formação de todos os planetas resulte em sistemas planetários exatamente iguais ao nosso – o único observado até então.

Planetas fora do eixo e na contramão

Depois da detecção inicial dos nove novos exoplanetas, com o instrumento WASP (Wide Angle Search for Planets), a equipe de astrônomos utilizou diversos outros aparelhos para confirmar as descobertas e caracterizar os exoplanetas em trânsito encontrados tanto neste novo rastreamento como nos anteriores.

Surpreendentemente, quando a equipe combinou os novos dados com as observações mais antigas, descobriu que mais de metade de todos os exoplanetas do tipo Júpiter quente estudados tem órbitas desalinhadas com o eixo de rotação das suas estrelas hospedeiras.

A equipe descobriu ainda que seis exoplanetas desta extensa amostragem (dos quais dois são descobertas novas) têm movimentos retrógrados: eles orbitam a sua estrela na direção “errada”, ou na contramão.

“Estes novos resultados desafiam claramente o conhecimento convencional de que os planetas devem sempre orbitar na mesma direção da rotação das suas estrelas,” afirma Andrew Cameron, da Universidade de St Andrews, na Inglaterra. Foi ele quem apresentou estes novos resultados no Encontro Nacional de Astronomia do Reino Unido, que está acontecendo esta semana em Glasgow.

Consertando a teoria da formação planetária

A origem dos exoplanetas do tipo Júpiter quente é um enigma desde a descoberta do primeiro deles, há cerca de 15 anos. São planetas com massa similares ou maiores do que a de Júpiter, mas que giram em alta velocidade em órbitas muito próximas da sua estrela.

Os astrônomos acreditam que os núcleos dos planetas gigantes se formam de uma mistura de partículas de rocha e gelo, material que se encontra apenas nas regiões mais frias e afastadas do sistema planetário.

Desde modo, estes exoplanetas deveriam formar-se longe da sua estrela – novamente, uma influência clara sobre a teoria do material observacional até agora disponível, ou seja, o nosso próprio Sistema Solar.

Para dar conta dos novos dados, a partir da descoberta desses exoplanetas gigantes gasosos, os astrônomos teorizaram que eles se formariam como sua teoria estabelecia e, só depois, migrariam para órbitas mais interiores, muito mais próximas da estrela hospedeira.

Eles afirmam que este fenômeno poderia ser explicado por interações gravitacionais com o disco de poeira a partir do qual os planetas se formam, em um cenário a se desenrolar ao longo de alguns milhões de anos, resultando numa órbita alinhada com o eixo de rotação da estrela hospedeira. Este cenário permitiria igualmente a formação subsequente de planetas rochosos do tipo da Terra.

Infelizmente, esta hipótese não explica as novas observações.

Acostumados com o nosso Sistema Solar, os cientistas acreditavam, com base em sua teoria de formação planetária, que todos os planetas deveriam orbitar suas estrelas mais ou menos no mesmo plano. Vários dos exoplanetas descobertos não obedecem a esta regra. (Imagem: ESO/L. Calçada)

Consertando a teoria – Tentativa 2

Para explicar os novos exoplanetas retrógrados agora descobertos, uma teoria de migração alternativa sugere que a proximidade desse tipo de exoplaneta em relação às suas estrelas não se deve a interações com o disco de poeira, mas sim a um processo de evolução mais lento que envolve uma “luta” gravitacional com companheiros planetários ou estelares mais distantes, durante centenas de milhões de anos.

Depois que essas perturbações gravitacionais levam um exoplaneta gigante a uma órbita inclinada e alongada, este sofrerá fricções de maré, perdendo energia cada vez que a sua órbita o aproxima da estrela. Deste modo, ele ficará eventualmente “estacionado” numa órbita quase circular, mas inclinada de maneira aleatória, próximo da estrela hospedeira.

“Um efeito secundário dramático deste processo seria o de que qualquer pequeno planeta do tipo da Terra seria varrido destes sistemas,” diz Didier Queloz do Observatório de Genebra. É isto que fez com que os astrônomos afirmarem que, provavelmente, estrelas que possuem gigantes gasosos em suas proximidades não teriam planetas rochosos como a Terra.

Dois dos novos exoplanetas retrógrados descobertos possuem companheiros de grande massa, mais distantes, que poderiam ser as potenciais causas do efeito agora teorizado.

Como se formam os planetas

Se é muito cedo para afirmar que a nova hipótese se estabelecerá como uma nova teoria de formação planetária, uma coisa pelo menos é certa: os astrônomos vão se dedicar ainda com mais afinco na busca de novos exoplanetas, de forma a terem uma amostra observacional que os permita novamente criar uma explicação para a pergunta que não vai parar de ser feita: como se formam os planetas?

Esta teoria alternativa de “luta gravitacional”, embora não seja exaustiva e não elimine novas propostas, deverá suprir a lacuna – pelo menos até que se descubra um sistema planetário que tenha tanto um gigante gasoso quanto um planeta rochoso menor.

Observatórios robóticos

Os nove novos exoplanetas foram descobertos pelo instrumento WASP (Wide Angle Search for Planets).

O WASP tem dois observatórios robóticos, cada um com oito câmaras de grande ângulo que monitoram o céu continuamente à procura de eventos de trânsito planetário.

Um trânsito planetário ocorre quando um planeta passa à frente da sua estrela hospedeira – em relação à Terra – bloqueando temporariamente parte da radiação emitida pela estrela e que chega até nós.

As oito câmaras de grande ângulo conseguem monitorar milhões de estrelas simultaneamente, tentando detectar esses raros acontecimentos de trânsito.

Planeta em trânsito

Para confirmar a descoberta e caracterizar um novo planeta em trânsito, é necessário fazer um estudo de velocidade radial para detectar as oscilações da estrela hospedeira em torno do centro de massa comum (estrela + planeta).

Isso é feito com uma rede internacional de telescópios equipados com espectrômetros muito sensíveis. No hemisfério Norte o Nordic Optical Telescope, instalado nas ilhas Canárias, e o instrumento SOPHIE, montado no telescópio de 1,93 metro do Observatório de Haute Provence, na França lideram a busca.

No hemisfério Sul, o HARPS, montado no telescópio de 3,6 metros do ESO, e o espectrômetro CORALIE, montado no telescópio suíço EULER, ambos em La Silla, no Chile, foram utilizados para confirmar a descoberta dos novos planetas e medir o ângulo que a órbita de cada planeta faz com o equador da respectiva estrela.

Os telescópios robóticos Faulkes, situados no Havaí e Austrália, forneceram medições de brilho para a determinação do tamanho dos planetas.

Planetas gigantes gasosos

Exoplanetas do tipo Júpiter quente, também chamados gigantes gasosos, são planetas com massas similares ou maiores do que a de Júpiter, que orbitam as suas estrelas hospedeiras em órbitas muito mais próximas da estrela do que qualquer planeta do nosso Sistema Solar se encontra do Sol.

Como são grandes e estão próximos da estrela hospedeira, eles são mais fáceis de detectar através do seu efeito gravitacional sobre a estrela e, ao mesmo tempo, têm maior probabilidade de passar à frente da estrela.

A maior parte dos primeiros exoplanetas descobertos pertence a esta classe de objetos. Apenas no início de 2010 foi anunciada a descoberta do primeiro exoplaneta temperado, com temperaturas mais baixas, e que foi brindado pelos astrônomos como uma verdadeira Pedra de Roseta planetária.

Fonte: Inovação Tecnológica

Nosso Universo pode estar em uma ponte entre dois outros universos

Pontes de Einstein-Rosen, como a ilustrada acima, nunca foram observadas na natureza, mas oferecem soluções teóricas para a Relatividade Geral ao combinar modelos de buracos negros e buracos brancos.(Imagem: Wikimedia Commons)

Vermes

O nosso universo pode estar situado no interior de um buraco de minhoca (wormhole) – também conhecido como Ponte de Einstein-Rosen – uma espécie de “cano” hipotético que une dois universos.

O próprio buraco de minhoca seria parte de um buraco negro que ficaria dentro de um universo muito maior, que contém o nosso como um traço dificilmente detectável por algum cientista “extra-universal”.

Esse cenário, com cara de ficção científica, no qual nosso universo nasceu dentro um buraco de minhoca, está em um artigo que acaba de ser publicado em uma das mais importantes revistas de Física do mundo.

Gravidade e expansão acelerada do Universo

Tal exercício teórico não nasce da ociosidade: acontece que a física atual se debate há anos com problemas difíceis de resolver. O maior deles é a nossa bem conhecida gravidade.

Embora seus efeitos possam ser sentidos o tempo todo, ela não se dá com as outras forças conhecidas. Nenhum cientista conseguiu até hoje desenvolver uma teoria que junte a gravidade às forças nucleares fraca e forte e ao eletromagnetismo.

O outro problema é a expansão do Universo. A gravidade deveria estar fazendo com que ele estivesse se contraindo, ou no mínimo, ela deveria estar desacelerando sua expansão. Mas as observações mostram o contrário, o que fez surgir as teorias da matéria escura e da energia escura.

Saindo pelo cano

Nikodem Poplawski, da Universidade de Indiana, nos Estados Unidos, acredita que esses problemas podem ser resolvidos se nosso universo tiver nascido quando uma estrela gigante, situada em um universo muito maior e muito mais antigo do que o nosso, colapsou, formando uma ponte para um outro universo.

Se o nosso universo surgiu no meio dessa ponte entre esses dois outros universos, a gravidade pode ser rastreada para antes daquele instante mágico do Big Bang, permitindo sua unificação com as outras forças.

E a expansão acelerada do nosso universo seria explicada pelo simples fato de que estaríamos “vazando” pelo buraco de minhoca, atraídos por outro universo.

Buracos brancos

Poplawski admite que apenas um experimento ou uma observação direta poderiam revelar o movimento de uma “partícula” – tão grande quanto o nosso próprio universo – em um buraco negro real.

Mas ele também salienta que, como os observadores somente podem ver o lado de fora de um buraco negro, o interior não pode ser vislumbrado a menos que um observador entre no buraco negro ou já more lá.

“Esta condição seria satisfeita se o nosso universo estiver no interior de um buraco negro existente em um universo maior,” afirma ele.

“Como a teoria geral da relatividade de Einstein não escolhe uma orientação para o tempo, se um buraco negro pode se formar a partir do colapso gravitacional de matéria através de um horizonte de eventos no futuro, então o processo inverso também é possível. Um processo assim poderia descrever um buraco branco explodindo: a matéria emergindo de um horizonte de eventos no passado, exatamente como o Universo em expansão,” explica Poplawski.

Um buraco branco é conectado a um buraco negro por uma ponte de Einstein-Rosen (ou buraco de minhoca) e é, hipoteticamente, a reversão no tempo de um buraco negro.

Um universo em cada buraco negro

No artigo, Poplawski sugere que todos os buracos negros astrofísicos – e não apenas os buracos negros Schwarzschild e Einstein-Rosen – podem ter pontes Einstein-Rosen, cada um com um novo universo em seu interior, que se formou simultaneamente com o buraco negro.

“Do que decorre que o nosso universo poderia ter-se formado dentro de um buraco negro existente dentro de outro universo”, defende ele. Ou, mais especificamente, dentro de um buraco de minhoca que une dois outros universos.

Segundo ele, o conceito de um universo que nasce no interior de um buraco negro de Einstein-Rosen poderia evitar ainda o problema da física atual com o chamado problema da perda de informação dos buracos negros, que afirma que toda e qualquer informação sobre a matéria é perdida quando ela passa pelo horizonte de eventos de um buraco negro – por sua vez, desafiando as leis da física quântica.

Para isso, ele propõe o uso de um sistema de coordenadas euclidianas, chamadas coordenadas isotrópicas, para descrever o campo gravitacional de um buraco negro e para modelar o movimento geodésico radial de uma “partícula de grande massa” no interior desse buraco negro.

Em seu trabalho, Poplawski estudou o movimento radial ao longo do horizonte de eventos (a fronteira de um buraco negro) de buracos negros do tipo Schwarzschild e Einstein-Rosen – ambos soluções matematicamente legítimas da Relatividade Geral. Faltaria agora generalizar mais a sua solução.

Bibliografia:

Radial motion into an Einstein-Rosen bridge
Nikodem J. Poplawski
Physics Letters B
12 April 2010
Vol.: 687, Issues 2-3, Pages 110-113
DOI: 10.1016/j.physletb.2010.03.029

Fonte: Inovação Tecnológica

Fluxo Escuro é rastreado nas profundezas do Universo

Os pontos coloridos são aglomerados de galáxias, com as cores mais avermelhadas indicando distâncias maiores. As elipses coloridas mostram a direção do movimento geral dos aglomerados da cor correspondente.(Imagem: NASA/Goddard/A. Kashlinsky, et al.)

Se você ainda não se acostumou com conceitos como matéria escura e energia escura, prepare-se para assimilar mais um termo na lista dos inexplicáveis mistérios do universo: Fluxo Escuro.

O que é Fluxo Escuro

A ideia ainda é controversa, mas tente imaginá-la da seguinte forma: depois do Big Bang, o Universo está se expandindo continuamente – e há evidências de que esta expansão esteja se acelerando.

Contando o tempo desde a ocorrência do Big Bang, é fácil imaginar que há uma espécie de “fronteira” no nosso Universo, que é até onde os efeitos do Big Bang atuaram.

Os cientistas calculam que esta fronteira esteja a aproximadamente 45 bilhões de anos-luz de distância – o tempo decorrido desde o Big Bang mais a aceleração da expansão do Universo.

Agora imagine que haja uma espécie de “buraco” nessa fronteira, por onde uma parte do nosso Universo pode estar literalmente “vazando” para outro universo. O Fluxo Escuro é a parte da matéria – e eventualmente da energia – do nosso Universo que estaria vazando por este ralo cósmico.

É por isto que os proponentes da ideia acreditam que o Fluxo Escuro pode ser a prova da existência de outro universo.

Ralo cósmico

O ralo cósmico para onde o Fluxo Escuro está fluindo fica em um ponto do céu entre as constelações de Sagitário e Hidra. Lá, os aglomerados de galáxias estão se movendo a velocidades extremamente altas em comparação com aglomerados de galáxias localizados em outras parte do céu – algo que, acrescente-se, é totalmente incompatível com todas as teorias cosmológicas atuais.

Agora, Alexander Kashlinsky, um astrofísico da NASA, que foi quem primeiro observou o Fluxo Escuro, acaba de medi-lo a uma distância duas vezes maior do que havia sido possível até agora. E não vê motivos para descartar suas teorias.

“Isto não é algo que tenhamos nos proposto a encontrar, mas não conseguimos descartá-lo,” disse Kashlinsky. “Agora, vemos que ele persiste a distâncias muito maiores – tão longe quanto 2,5 bilhões de anos-luz de distância.”

Horizonte do Universo

O Fluxo Escuro é controverso porque a distribuição de matéria no Universo observável não consegue explicá-lo. Sua existência sugere que alguma estrutura além do Universo visível – fora do nosso “horizonte cósmico” – está puxando essa matéria.

Os aglomerados de galáxias parecem estar se movendo ao longo de uma linha que se estende do Sistema Solar em direção a Sagitário/Hidra, mas ainda não há precisão suficiente na medição dessa direção.

Os dados atuais indicam que os aglomerados estão se dirigindo na direção desse ponto, afastando-se da Terra, mas a equipe ainda não pode excluir a possibilidade de que o movimento tenha a direção oposta.

“Nós detectamos o movimento ao longo deste eixo, mas hoje os nossos dados não podem afirmar tão fortemente como gostaríamos se os agrupamentos estão indo ou vindo”, disse Kashlinsky.

Desvendando o Fluxo Escuro

Kashlinsky e seus colegas estão agora trabalhando para expandir seu catálogo de aglomerados de galáxias a fim de mensurar o Fluxo Escuro a uma distância duas vezes maior do que a atual.

O trabalho é longo e extenuante porque pode levar anos apenas para localizar os aglomerados galácticos na região onde as medições devem ser feitas. Uma vez localizados, uma hora de telescópio é suficiente para medir a distância de cada aglomerado, mas observações subsequentes são necessárias para detectar seu movimento e sua velocidade.

O aprimoramento da modelagem do comportamento dos gases quentes no interior dos aglomerados de galáxias irá ajudar a refinar a velocidade, o eixo e a direção do movimento do Fluxo Escuro.

Mais para o futuro, os planos incluem testar os resultados em relação aos dados mais recentes captados pela sonda WMAP e pelo telescópio espacial Planck, que também está mapeando a radiação cósmica de fundo.

Fonte: Inovação Tecnológica

Bibliografia:

A new measurement of the bulk flow of x-ray luminous clusters of galaxies
A. Kashlinsky, F. Atrio-Barandela, H. Ebeling, A. Edge, D. Kocevski
The Astrophysical Journal Letters
March 2010
Vol.: 691, Number 2
DOI: 10.1088/2041-8205/712/1/L81

Conhecimento: Pangéia e a teoria da deriva continental

A idéia de que os continentes não estiveram sempre na mesma posição em que se encontram foi proposta pela primeira vez em 1596, pelo holandês Abraham Ortelius, que sugeriu que Américas foram cortadas e afastadas da Europa e da África pela ação dos terremotos. Já naquela ocasião Ortelius dizia que “os vestígios da ruptura eram fáceis de verificar, bastando que se examinasse um mapa-múndi com bastante atenção”.

Entretanto, somente após a publicação de uma teoria chamada “Deriva dos Continentes”, proposta pelo meteorologista alemão Alfred Lothar Wegener em 1912 é que a idéia do movimento dos continentes foi cientificamente considerada. A teoria argumentava que há cerca de 200 milhões de anos havia um único supercontinente chamado Pangeia, que começou a se partir.

Da mesma forma que Ortelius três séculos antes, Wegener também se apoiava em grande parte pelo encaixe absolutamente notável entre as costas da América e da África. Entretanto, o alemão também estava intrigado com enorme semelhança das estruturas geológicas, fósseis, plantas e animais encontrados tanto na América do Sul como na África, atualmente separados pelo Oceano Atlântico.

Para Wegener, era fisicamente impossível que aqueles organismos tivessem nadado ou sido transportados através de tamanha distância oceânica. Para o cientista, a presença de idênticas espécies ao longo das costas africana e sul americanas eram a evidência que faltava para provar que alguma vez os dois continentes já estiveram unidos.

O rompimento de Pangéia

Baseando-se na teoria de Wegener, o professor Alexander Du Toit, da Universidade de Johanesburgo, propôs que inicialmente o supercontinente Pangéia se rompeu e se dividiu em dois grandes continentes: a Laurásia, no hemisfério Norte e Gondwana no hemisfério sul. Com o passar do tempo ambos os continentes continuaram a se partir, dando origem aos continentes que hoje conhecemos.

No entender de Wegener, a fratura de Pangeia explicava a existência dos fósseis semelhantes em ambos os continentes e também as diversas evidências de mudanças climáticas. De acordo com Wegener, a descoberta de fósseis de plantas tropicais em depósitos de carvão na Antártida mostrava que o continente gelado já esteve alguma vez próximo ao equador, onde o clima temperado permitiu seu desenvolvimento. Além disso, depósitos de materiais glaciares nas regiões áridas da África reforçaram ainda mais a teoria Deriva dos Continentes.

Forças descomunais

Apesar das evidências estarem bem fundamentadas, a teoria da “Deriva Continental” não foi bem recebida pelos cientistas da época, especialmente nos EUA. O problema enfrentado por Wegener é que ele não conseguia explicar satisfatoriamente uma pergunta crucial feita pelos seus pares: afinal, que tipo de força tão poderosa podia mover as descomunais massas continentais ao longo de distâncias tão grandes?

Em seus estudos, Wegener argumentava que os continentes estavam se separando através do fundo do oceano, mas essa afirmação foi brilhantemente contra-argumentada por um notável geofísico inglês chamado Harold Jeffreys, que demonstrou que era fisicamente impossível à uma massa tão grande de rocha sólida separar-se através do fundo do oceano sem que se fragmentasse.

Somente após a Segunda Guerra Mundial é que a teoria de Wegener foi finalmente comprovada, ironicamente pelos norte-americanos que antes não viam com bons olhos a idéia do movimento continental. Foram os esforços de guerra acabaram por criar diversos equipamentos de sondagem que permitiram analisar com maior precisão o fundo do oceano. Os ecos de sonar revelaram um novo mundo, repleto de cordilheiras, penhascos e ranhuras que mostravam claramente o afastamento do leito submarino em diversas regiões dos oceanos.

Placas tectônicas

A compreensão e o estudo da Deriva Continental mostraram que a crosta terrestre, mais precisamente a litosfera – que engloba toda a crosta e a parte superior do manto até cerca de 100 km de profundidade – está quebrada em um determinado número de placas rígidas, que se deslocam em movimentos horizontais. Essas placas são conhecidas popularmente como placas tectônicas.

Esse movimento ocorre porque a litosfera, mais leve e fria praticamente flutua sobre o material mais quente, denso e parcialmente fundido que existe alguns quilômetros abaixo. É nessa parte viscosa, dos primeiros 200 km da astenosfera, que são geradas as correntes de convecção responsável pelo mecanismo que movimenta as placas tectônicas.

As placas deslizam ou colidem uma contra as outras a uma velocidade variável de 1 a 10 cm/ano. A compressão ou deslizamento entre elas produz gigantescas forças mecânicas que crescem à medida que se movimentam, gerando tensões e deformação nas rochas. Quando a tensão atinge o ponto de ruptura da rocha, toda a energia armazenada é repentinamente liberada, produzindo os terremotos.

Justamente na borda entre as placas, ao longo de faixas estreitas e contínuas é que se concentra a maior parte da sismicidade da Terra. É também próximo às bordas que o material fundido existente no topo da astenosfera ascende até a superfície e extravasa ao longo de fissuras ou canais, formando os vulcões.

Fonte: Apolo11